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This IEEE-style report will introduce the topic of brain-computer interface technology,
how it works, and its practical applications. The intended audience for this report is
anybody who is familiar with human cognition, neuroscience, or engineering and is

interested in how these fields may work together to build assistive neuro-tool
technologies for people with severe disabilities.
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Abstract—The field of brain-computer interfaces has
grown exponentially in the last couple of decades and
continues to grow with new discoveries everyday. Brain-
computer interfaces can be thought of as a system that
gathers data on the activity in the central nervous sys-
tem, or CNS, and translates it into artificial output that
replaces, restores and improves the natural CNS output.
This can ultimately change its interactions between the
CNS and its external or internal conditions [1]. This paper
is intended for anybody who is interested in how computer
technology can be implemented with neuroscience to create
neurorehabilitation tools. The paper will give a brief
introduction to brain-computer interfaces, how they work,
some examples of real-life applications, and finally discuss
the ethics of this new technology.

Index Terms—brain, IEEE, technology, software, hard-
ware, neurorehabilitation

I. INTRODUCTION

A brain-computer interface, or a BCI, is a hard-
ware and software communications system that
allows for signals received from the brain to be
translated into actions for a computer software [1].
It allows for people to interact with their surround-
ings without the use of their peripheral nerves
and muscles. A BCI works in three main steps; it
collects brain signals, interprets them, and outputs
commands to a connected machine, depending on
the nature of the brain signal received [2]. The BCI’s
ability to create a non-muscular path to demonstrate
a person’s intentions to an external software can
be advantageous in many ways, especially in the
medical field. With extensive research, BCIs are be-
coming popular among assistive centers to improve
the quality of life and reduce the cost of intensive
care for patients with severe motor disabilities.

Artificial intelligence and machine learning skills
are used in order to build brain-computer interfaces
that can recognize a specific set of brain signals
using five main stages– signal acquisition, signal
enhancement, feature extraction, classification, and
the control interface [3].

Brain-computer interface technology was not a
hotspot for research and development until recently.
Originally, the complex idea of a technology be-
ing able to translate brain signals into a vastly
different computer software was thought of as too

daunting and seemed impossible to others. However,
recent research within the last two decades has
led to new discoveries and developments to the
BCI field that brings hope to many. Researchers
specializing in vastly different fields such as neuro-
science, psychology, engineering, computer science,
and rehabilitation have come together to work on
brain-computer interfaces with high hopes and many
successes of implementing BCIs to assist patients
with severe motor disabilities [3]. The P300 Brain
Painting, motor-based imagery training, and smart
wheelchairs are just a few examples.

II. HOW IT WORKS

A. Brain Activity
The human nervous system consists of two main

parts: the central nervous system and the peripheral
nervous system. The brain is the main organ of
the central nervous system, consisting of over 100
billion neurons, or individual nerve cells that are
connected to each other by dendrites and axons [5].
Everytime a human moves, thinks, or feels, these
neurons are producing small electric signals that
are passed from neuron to neuron at speeds as fast
as 250 mph [7]. These signals are generated by
differences in electric potential carried by ions on
the membrane of every neuron. Where an electric
current is leaving a neuron, there is a positive
polarity, and where a current is entering, there is
negative polarity [5]. These currents, also known as
primary currents, are most commonly located and
embedded in the brain tissue and are strong enough
to reach the skull and scalp. The voltage differences
are what are considered the electric brain signals.
In addition, the myelin sheath of a neuron is a
protective covering that surrounds a neuron that tries
to insulate the travelling signals, yet some of the
electric signal is bound to escape. These escaping
signals of voltage differences are what are detected
by a BCI and can be interpreted to direct an external
device.

B. Five Stages to a Successful BCI
While there are many different types of brain-

computer interfaces, each version of the technology
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uses the same steps to successfully implement a
BCI. Artificial intelligence and machine learning
concepts are used in order to build brain-computer
interfaces that can recognize a specific set of brain
signals in five main stages– signal acquisition, signal
enhancement, feature extraction, classification, and
the control interface [3]. The signal acquisition and
preprocessing stages are in charge of capturing and
filtering the initial brain signals. They do this in
several different processes such as noise reduction
and artifact processing.

The feature extraction stage searches and iden-
tifies any noticeable information on changes in
the recorded brain signals. As the incoming brain
signals can be very complex, it is nearly impossible
to find any meaningful information without the
help of different processing algorithms to search for
content [8]. Some of these algorithms include time-
frequency representations, Hjorth parameters, and
slow cortical potential calculations (SCPs). Once
these changes have been identified, the signals are
mapped out, analyzed, and grouped together accord-
ing to their distinct features.

In the classification stage, machine learning tech-
niques are used to recognize and choose the signals
with the desired features for this particular task,
proceeding finally to the control interface stage
where these chosen signals are translated into mean-
ingful commands for an external device, such as a
wheelchair or a computer [3].

Many challenges may arise during these steps
of acquiring, analyzing, and translating the brain
signals, which are often critical to the entire process
of a BCI. For example, the extraction of distinct fea-
tures among the brain signals is very risky; the raw
data of the useful signals is often mixed with other
electric signals, making it difficult to differentiate
between the two [3]. Furthermore, electric signals
are not always stationary and can become distorted
when technologies such as an electroencephalogram
(EEG) are used to acquire the signals.

III. TYPES OF BCI

The ideal brain-computer interface is “bi-
directional”, having the ability to both record from
and to stimulate the nervous system [5]. This means
that the pathway of a signal can also work in
the opposite direction, where scientists can assess
what type of signal is sent to the brain by neurons

when a person is doing a certain task– whether
that be seeing, thinking, or moving. Analyzing the
signal allows for scientists to produce those exact
signals into a patient’s brain who may be lacking
the ability to do one of these tasks, allowing them
to successfully perform a task with the help of a
BCI. For example, researchers have been able to
interpret the type of signal that is sent to the brain
via the optic nerve when a person sees colors. With
this information, they can rig a BCI camera that
sends those exact signals to a blind patient’s brain,
allowing them to essentially “see” colors without
eyes [5].

Depending on the type of work scientists may
want to do, they choose from two main types
of brain-computer interface technology– the non-
invasive and invasive BCIs. The easiest and least
expensive method is using a non-invasive BCI, in
which electrical sensors are placed on the exterior
of the scalp to measure the electrical potentials
produced by the brain. This can be developed with
the help of an electroencephalography (EEG), mag-
netoencephalography (MEG) or magnetic resonance
tomography (MRT). However, the EEG-based BCI
using electrodes is the most common and preferred
type of non-invasive BCI, as they are easily pro-
cessed and decoded by computer software.

Now, there are two main types of electrodes used
by a BCI: the wet and dry electrodes. Wet electrodes
use a saline solution of gel, increasing conductivity
because the electrical distance is minimized. Most
wet electrodes are made of stainless steel, gold, or
silver and are covered with a silver chloride coating.
Dry electrodes are more convenient and much easier
to use, but they can lose higher frequencies of
incoming brain signals. For this reason, because
many electrodes as possible are required to capture
as much of the signal as possible, they are arranged
in a wearable cap that is easy to take on and off [8].

While non-invasive methods are the most widely-
used type of BCI due to its efficiency, the resolution
of the electric signals are slightly distorted and
challenging to read, since the skull acts as a wall that
makes it harder for these signals to pass through.

To get a higher-resolution signal, scientists may
use an invasive brain-computer interface, where the
micro-electrodes are placed directly into the brain
cortex to measure the activity of a single neuron.
To use an invasive BCI, a patient must undergo
an extensive and expensive neurosurgical process.
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Fig. 1. Gold-coated EEG wet electrodes [8]

However, the quality of the spatial resolution is
much higher than that of an EEG, since the signal
does not have to travel as far to reach the scalp
[8]. This gives researchers a more precise feedback
and direct reception of the electric signals, allow-
ing them to understand which area of the brain
the signal is coming from. It is also important to
note that the use of an invasive BCI comes with
many risks. During neurosurgery, the patient’s body
may reject the foreign object being implanted. In
addition, BCIs that are left in the brain long-term
tend to cause some formation of scar tissue in the
brain’s gray matter, ultimately blocking the electric
signals [7].

Fig. 2. Non-invasive BCI cap made up of many dry electrodes [9]

IV. BCI APPLICATIONS

Brain-computer interfaces have been contributed
into various fields of research, including the med-
ical, educational, and entertainment fields. At the

Fig. 3. To insert an invasive BCI, a patient’s skull must be opened
and the microchip must be planted into the brain’s gray matter itself.
Location of the microchip depends on the what the BCI application’s
intentions are [7].

moment, as the BCI technology is most prevalent in
clinical applications, users include individuals who
are severely diabled by neuromuscular disorders or
serious injuries. However, there is high hope for
BCIs to be further implemented for entertainment
purposes for the general public in the future as well.

A. Medical Applications

Brain-computer interfaces are mostly popular
among the healthcare field in the form of various
applications that can take advantage of incoming
brain signals. They can be used for methods of
prevention, detection, diagnosis, rehabilitation, and
restoration [4].

1) Prevention: With the help of BCIs, differ-
ent consciousness level determination systems have
been developed. This allows for researchers to in-
vestigate the various attentiveness influences that
smoking and alcohol can have on brain waves.
Gathering information on this allows for scientists
to understand which brain waves and brain areas
are mostly inhibited under severe alcoholism, and
ultimately can help reduce the risk of deaths from
being under the influence [4].

In addition, traffic accidents are considered to
be the main cause for death or injury; therefore,
analyzing their causes for later prevention has
been a rising concern for many researchers [4].
Various reasons for traffic accidents such as motion
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sickness can be studied with the help of brain-
computer interfaces. Motion sickness is a result of
sensory overload and sending conflicting sensory
information between the body, inner ear, eye, and
brain. This results in a person’s inability to maintain
self-control and having a diminished monitoring
and alertness system, ultimately leading to traffic
accidents. With the help of auditory-evoked BCI
systems, the human auditory signals can be
measured to report one’s motion sickness level
in real time and ultimately use this information
to help reduce the risk of motion-sickness-related
traffic accidents.

2) Detection and Diagnosis: The mental state
monitoring function of brain-computer interface
systems has helped researchers in also detecting
various health issues. Some examples of these are
abnormal brain structures such as a brain tumor,
seizure disorders such as epilepsy, sleep disorders
such as narcolepsy, and brain swelling such as
encephalitis [4]. EEG-based brain tumor detection
systems have been on the rise, as they are a cheap
alternative to MRI and CT-SCAN detection systems.
Similarly, BCI systems have been developed to rec-
ognize EEG abnormalities of a patient with epilepsy
and ways to control its effects.

Lastly, BCI systems have been able to
successfully diagnose dyslexia at a very early
age by measuring brain activity behavior [4].
Dyslexia is a learning disability that makes it
difficult for people of all ages to read and write.
By diagnosing it at an early age, it helps those
affected to get the extra help they need to gain their
basic reading and writing skills as soon as they can.

3) Rehabilitation and Restoration: Brain-
computer interfaces are currently very popular
among assistive and rehabilitation centers to help
people recover from serious mobility injuries or
neuromuscular disorders. People who benefit most
from BCIs are those suffering from the most
severe motor disabilities, including people with
amyotrophic lateral sclerosis (ALS), spinal cord
injury, stroke, and other neuromuscular diseases
or injuries. Injuries located closer to the brain
generally lead to higher grades of paralysis and
more loss of function. In some cases, paralysis may
be so severe that a person is unable to move almost
no part of their body. This is known as Locked-in

Syndrome, or LiS. With this condition, it is
generally not possible to speak and communication
is only possible through subtle facial movements
such as eye blinks [8].

Brain-computer interfaces that can restore
communication ability of people with such severe
paralysis are currently being developed. With
extensive research, there are high hopes for such
patients to be able to communicate with an
extensive vocabulary, send messages through the
internet, and do simple tasks such as turning on
and off appliances without the help of others. In
addition, the brain structures associated with many
of these injuries or disorders can be reorganized
and restored through neuroplasticity, or the ability
for the brain to rehabilitate itself by reforming new
neural connections [8].

4) Motor Imagery-Based Rehabilitation: Using
brain-computer interfaces for neurorehabilitation in-
volves the recording and decoding of local brain
signals generated by the patient, as they try to
perform a motor or mental imagery task. Mental
imagery tasks can be either kinaesthetic, where a
patient can “feel” the movement in your mind, or
visual, where a patient can “see” the movement from
one’s imagination or a 3rd-party stimulus. The main
objective is to promote the recruitment of selected
brain areas involved and to facilitate neural plastic-
ity, or the ability to rewire synaptic connections in
the brain. The recorded signal can be used in several
ways. One way to objectify and strengthen motor
imagery-based training by providing the patient with
feedback on the imagined motor task. A BCI can
use this to infer a user’s intent and assist them in
their motor commands.

Several studies indicate different proposals of an
effective training method for motor-based imagery
training that utilizes feedback for left and right
hand imagery using a brain-computer interface[15].
Experiments were carried out to gauge a better
understanding on the most optimal training method.
These experiments included the comparison of a
subject practicing motor imagery of left and right
hand movement without any visual feedback and
another experiment in which the subject is trained
with the support of visual feedback [17]. Many
of these experiments were conducted in a loud
environment to simulate a distracting environment.
One particular experiment showed groundbreaking
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results–a significantly greater performance from pa-
tients who were provided visual feedback, even in
a distracting environment.

These experiments used healthy subjects in their
prime ages between 19 and 22. The subjects were
randomly divided into two groups. The first group
experimented with motor-imagery training with vi-
sual feedback training before attempting the motor-
imagery training without the feedback. The second
group experimented with motor-imagery training
without visual feedback before training with visual
feedback.

During each motor-imagery based training, each
subject sat on a chair facing the computer screen. A
distracting environment was simulated through their
headphones, which were worn during the entirety of
every training session. Every subject was required
to stay still and gaze at a computer monitor and
follow the instructions displayed on the screen.

During the non-visual motor-imagery training
session, each subject completed two 20-second trials
with a 5-minute break between each. During each
trial, when an image of a cross was shown on
the screen, the subject was told to relax. When an
arrow pointing to the right appeared, the subject was
expected to imagine moving their right hand and
similarly for the left side. It is important to note
that no other visual feedback was added to each
trial apart from the cross and arrow images.

The visual motor-imagery training session con-
sisted of 20 trials. Similarly, when a cross appeared
on the monitor, the subject was asked to relax [17].
However, after that a blue ball would appear in the
middle of the top of the screen and a green bar was
shown on one of the sides of the screen. The ball
would be animated to fall down and the subjects
were instructed to use their left or right hand motor
imagery to catch and move the ball to the side
that the green bar was on. The EEG signals were
recorded when the ball moved toward the green ball.
After the visual motor training, a simple trial of non-
visual feedback was conducted to record the EEG
data after the visual feedback training. EEG signals
were recorded from the sensorimotor cortex and
later analyzed. Comparing the EEG results of each
of the subjects, there was substantial evidence that
visual motor-based imagery training had a greater
impact on the subject’s ability to imagine to do
motor tasks [17].

These results show that with the use of BCIs,

there is much hope for patients with neuromuscular
disorders to be able to communicate or move again.
Promoting the recruitment of selected brain areas
involved and to facilitate neuroplasticity, there is
much hope that brain-computer interfaces can be
successful in reversing the effects of neural damage
to the brain and allowing patients who were once
paralyzed to move and communicate once again.

They may also be used to create BCI-based
wheelchairs and prosthetics. Recently, a robot was
operated using brain waves that were collected by
EEG and fNIRS [16]. These are just a few ways
that BCIs can be implemented in the real world.
BCI technology is still fairly new but there is a lot
of potential for it in the future.

B. P300 Brain Painting

Among different electric signals that a brain pro-
duces is the P300 event-related potential, which can
be used to build several types of brain-computer
interfaces for both assistive and therapeutic pur-
poses. The P300 event-related potential, or ERP, is
an electrophysiological response to an internal or
external stimulus that is evoked during a sensory,
motor, or cognitive task [10]. It is the largest and
most noticeable ERP component that is generated
when a subject is met with a decision-making task.
Being such a strong signal, it can be easily recorded
using an non-invasive EEG cap. Using this to their
advantage, researchers have been able to create
BCIs that measure the P300 wave for different appli-
cations, including the P300 brain painting therapy,
smart wheelchairs, gaming, lie detection, and stroke
rehabilitation.

As paralysis can hinder many patients’ abilities to
communicate, they had no means of a creative outlet
until recent inventions of the P300-Brain Painting–
a recent application that allows for users to paint
pictures using the activity of their brain only. Simply
put, the brain painting software will use the P300
waves as a control signal for the painting application
using a non-invasive connection to link the brain and
computer together.

To enable the brain to control what a patient may
see on a computer screen, the user will wear an EEG
cap that is composed of numerous dry electrodes,
which is connected to an amplifier [11]. The elec-
trodes are positioned mainly on the frontal-central
parietal lobe and occipital midline of the brain–
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the two main structures that are responsible for
decision-making. Some additional electrodes cover
the parieto-occipital area, which relate to visual
tasks. Then, the user will see the painting items
flashing in columns and rows; this is also known as
the “P300-Matrix” [12]. The user will focus his or
her attention on a single element of the matrix for a
couple of seconds, the brain signals that are elicited
during this decision-making process will generate a
corresponding output of what painting tool will be
selected on the matrix to use to draw on a digital
canvas.

The effects of the P300 Brain Painting have been
massive among neurorehabilitation and assistive
centers. This new way of expressing one’s creativity
and communication has helped many patients deal
with mental health issues such as depression or
anxiety that may have developed in correlation to
their disability. It allows for patients to feel like they
are a member of society again and can improve their
overall quality of life [12].

Fig. 4. Simplified setup of Brain Painting. A: the end-user with
the EEG cap. B: EEG amplifier. C: stimulation monitor. D: canvas
monitor [12]

C. Smart Wheelchairs
Another application of a brain-computer inter-

face to assist disabled individuals is the idea of a
smart wheelchair. A typical smart wheelchair would
be composed of an omnidirectional wheelchair, a
lightweight robotic arm, a target recognition module
and an autocontrol module. It will use the “you
only look once” (YOLO) algorithm that can rec-
ognize and locate a specified target destination in
real time, using the wheelchair and robotic arm to

Fig. 5. Example of P300 Matrix. (A) is an example of a P300
Speller in which patients can write words by choosing figures from
the matrix. (B) is an example of tools that compose a P300 Brain
Painting Matrix [11].

complete the operation successfully [13]. Previous
assistive wheelchairs would use an alternative con-
troller, such a joystick, that could directly control
a wheelchair. However, this would require even the
slightest bit of motor ability and control from a pa-
tient to operate. Because of that, a smart wheelchair
that can be controlled solely based on one’s brain
activity would be much more advantageous to users
who are severely paralyzed and have little to no
motor ability.

The basic function for a wheelchair is to simply
transport a user from place A to place B. It is
important for a wheelchair system to be as intu-
itive and easy to use as possible– especially for
patients with a disability [13]. To do so, many
smart wheelchairs are implemented based on virtual
reality technology; specific locations or destinations
in a user’s environment will be constructed and
displayed in an N x M polar grid. The user will
be able to select a destination through a P300-
based BCI, in a similar fashion to the way users
may use a P300 Brain Painting BCI that was men-
tioned earlier. The target recognition module will
recognize, locate, and confirm the selected target in
an online environment. Then, the auto navigation
module will steer the wheelchair to its selected
destination. Oftentimes, the pathway to reach the
destination will be straightforward. However other
times, the system may deal with a more dynamic
environment that requires the help of the robotic
arm as an additional actuator to do so. For example,
a user may choose to travel to a different room, yet
there is a closed door that is in the way. Therefore,
the BCI system must recognize the distance the
destination is, any obstructions that are in the way,
and determine if the obstructions can be dealt with
in order for the user to travel successfully. The
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wheelchair is responsible for travelling up to the
closed door, where now the robotic arm will have
to open the door for the user and wheelchair to pass
through.

The logistics and architecture of how a smart
wheelchair brain-computer interface is able to suc-
cessfully complete such complex tasks involve four
main parts– the hardware and software structure,
target detection and localization, the target solution,
and the wheelchair and robotic arm control [13].

The hardware structure is a flexible wheelchair
that is constructed with an omnidirectional chassis,
allowing for the wheelchair to travel in any direction
and to rotate with zero radius. This makes the
wheelchair well-accommodated to navigate even in
complicated environments like tight spaces or a
cluttered room. In addition to the main structure of
the wheelchair is the robotic arm that can provide
extra navigation for more complicated tasks, such
as opening a door or picking up a water bottle [13].
A kinetic camera is also placed on the back support
of the wheelchair to capture the depth streams for
areas in the front of the wheelchair and to constantly
upload this data onto the cloud, allowing for real-
time navigation. Low cost lidars are placed on the
front right and back left corners of the wheelchair
that are constantly measuring the distance of every
object within the wheelchair’s range.

The software structure of the smart wheelchair is
composed of modules that communicate with each
other to ensure efficiency and effectiveness. To do
so, a robot operating system (ROS) is employed for
the main software structure. ROS obtains the data
from the hardware structure including the devices
and sensors and inputs them in complex algorithms
that will later allow for robot control.

In order for the patient to operate the wheelchair
in versatile environments, a target detection and
localization algorithm is used to recognize targets
in real time. Specifically, the deep-learning-based
method, or the “you only look once” (YOLO) algo-
rithm is in charge of detecting targets at fast speeds
[13]. After a target is detected, the bounding box for
the target must be confirmed. This means that has to
be confirmation that the wheelchair is able to place
itself at its target within a certain limit of distance.
To do so, 3D points are extracted from a bounding
box that is 60% of the target’s original size. The
orientation of the target is calculated as well, as this
can greatly affect the quality of a human interaction

with the target. For example, if the selected target
was a person, the wheelchair must be able to travel
to the target person and place itself in front of the
person, not in the back, as human interaction is face-
to-face.

After all of the data of recognizing the location
of a target is confirmed, the most optimal solution
must be determined; a lot of the time, a user may
want to interact with the target after reaching its
destination. To do so, the BCI system must be able
to “predict” what the user may want to do at his
or her destination by using different algorithms and
comparing data on behaviors from the past. For
example, if a user were to select a person sitting
on a chair, the BCI will assume that the user’s
goal is to have a conversation with a person who
is sitting. Therefore, the wheelchair needs to realize
to stop at a distance that is comfortable for human
communication– about 80cm. If a user were to
select a bottle that is placed on a table, the optimal
solution would be to reach the target, pick up the
bottle, and bring it to the user’s mouth. To do the
latter steps, the robotic arm must be pre-calibrated
to wrap its fingers around the bottle, to locate the
user’s mouth, and to tilt the bottle at a steady rate
for the user to drink.

Finally, the wheelchair and robotic arm will do
as the previous steps have instructed it to do. Each
hardware aspect of the BCI system contains its own
ROS package that carries important data to carry
out the processes easily. For example, the ROS
package for the robotic arm will contain important
information to move in a human manner and to keep
the user’s real-time location in mind at all times. All
of these steps combined allows for a user to travel
on a wheelchair without using any motor skills.

V. THE ETHICS DEBATE

With new and emerging technologies that are
successfully able to do the impossible, there is
always the debate of ethics and ethical concerns that
must be addressed by the neuroscience community.
These problems raise different concerns of topics
such as managing patient expectations, personal
identity, informed consent, and biological risks [9].

Because brain-computer interfaces have created
high hopes to help patients with severe neuromus-
cular disorders live a normal life again, doctors may
run into ethical problems surrounding a patient and
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his or her family’s expectations of the technology.
There are a list of different factors that could affect
the ability of a BCI’s success in helping a patient or
not– cognitive capacity or the severity of a patient’s
disability are only a couple. The possibility of the
BCI technology failing could create false hope and
ultimately significant distress to patients, making it
hard to determine if the positive outcomes are worth
the risks. Furthermore, as discussed earlier, there
are always the risks of a patient’s body having bad
reactions to the invasive BCI. Since the BCI field
has only recently begun growing, there is also very
little to no information on any risks an implanted
BCI chip could have on a patient’s brain in the long
term. Non-medical safety issues are also important
to keep in mind. Many areas for intense training
and cognitive concentration for neurorehabilitation
would require a patient to attend regular and chal-
lenging training sessions that can impose mental,
emotional, and physical stress to a patient [14]. With
these factors in mind, it is important to assess if the
benefits will ultimately be worth the risk.

A patient’s privacy is also an ethical problem
to consider. Since BCIs are often viewed as a
technology that is “able to read minds”, which is
very plausible in the near future, this can raise
ethical questions of a patient’s personal identity and
privacy [9]. For example, how will a patient’s data
be transmitted and stored? Will there be ways for
a patient to keep full ownership of his own data to
avoid hackers or other people accessing his or her
thoughts?

Legal implications also raise concern when de-
bating on the ethics of brain-computer interfaces.
Many BCIs are used to assist paralyzed patients
to help them regain movement in their limbs by
using prosthetics. Many researchers question who
would be responsible in case an accident were
to occur with such methods. It would be difficult
to distinguish a malfunction in the BCI from a
voluntary action.

Lastly, the possibility of BCIs to increase one’s
mental or physical ability would create an impact on
society or even society’s definition of “humanity”
[14]. Many ask if patients using invasive BCIs in
their daily life would be considered as equal to
other humans. For example, would athletes with
such prosthetic limbs be able to compete with
others in a regular race? Similar questions may
arise with one’s increased mental ability with BCIs

[9]. In addition, there are increasing concerns as to
how a BCI may change a patient’s idea of social
identity, personality, and authenticity [14]. Could
a patient who has spent their entire life unable to
communicate and essentially being socially isolated,
is able to live his or her life normally, run into issues
of feeling a loss of personal identity and have a hard
time transitioning back into society? These are all
questions that are currently being debated and open
to consideration when implementing new types of
brain-computer interfaces.

VI. CONCLUSION

Brain-computer interfaces are a new type of tech-
nology that are of increasing interest to researchers,
being an interactive technology that allows people
to communicate and interact with the external world
without using their muscles. It works in three main
steps to do so; it collects brain signals, interprets
them, and outputs commands to a connected ma-
chine depending on the nature of the brain signal
received. With groundbreaking research and devel-
opment on BCIs, this technology has been able to be
applied in numerous fields– from the entertainment
industry to medical and clinical applications. This
report mainly talks about the clinical applications
of a BCI and how they can be used to help
patients with severe neuromuscular disorders feel
like a functioning member of society and promote
neuroplasticity in rehabilitation centers.

With major companies and business owners such
as Facebook and Elon Musk investing in the BCI
market, it is estimated to reach over $2.67 billion by
the year 20206. It is safe to say that this technology
is on the rise and is gaining popularity quickly.
Practical applications of brain-computer interfaces
are starting to make its way into other industries as
well, including the video game industry. It will be
interesting to see how brain-computer interfaces can
be implemented in a way for the general public to
use as well.
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